Abstract:A new Adaptive Neuro Particle Swarm Optimization (ANPSO) combined with a fuzzy inference system for diagnosing disorders is presented in this paper. The main contributions of the novel proposed method can be a global search across the whole search space with faster convergence rate. Moreover, it shows a better exploration and exploitation by applying the adaptive control parameters, automatic control of inertia weight and coefficient of personal and social behaviours. Utilizing such attributes lead to a fast and smart diagnosis mechanism which is able to diagnosis the diseases by the high accuracy. The ANPSO is associated with tuning the characteristics of the inference system to achieve the minimum diagnosis error as far as the optimized model is obtained. As a case study, we use liver disorders dataset called Bupa. According to the preliminary ramifications, the suggested adaptive PSO performance can overcome the traditional inference system and combined with other optimization methods substantially.
Abstract:In this study, a hybrid method based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) for diagnosing Liver disorders (ANFIS-PSO) is introduced. This smart diagnosis method deals with a combination of making an inference system and optimization process which tries to tune the hyper-parameters of ANFIS based on the data-set. The Liver diseases characteristics are taken from the UCI Repository of Machine Learning Databases. The number of these characteristic attributes are 7, and the sample number is 354. The right diagnosis performance of the ANFIS-PSO intelligent medical system for liver disease is evaluated by using classification accuracy, sensitivity and specificity analysis, respectively. According to the experimental results, the performance of ANFIS-PSO can be more considerable than traditional FIS and ANFIS without optimization phase.
Abstract:The main purposes of this study are to distinguish the trends of research in publication exits for the utilisations of the fuzzy expert and knowledge-based systems that is done based on the classification of studies in the last decade. The present investigation covers 60 articles from related scholastic journals, International conference proceedings and some major literature review papers. Our outcomes reveal an upward trend in the up-to-date publications number, that is evidence of growing notoriety on the various applications of fuzzy expert systems. This raise in the reports is mainly in the medical neuro-fuzzy and fuzzy expert systems. Moreover, another most critical observation is that many modern industrial applications are extended, employing knowledge-based systems by extracting the experts' knowledge.