Abstract:Smart buildings aim to optimize energy consumption by applying artificial intelligent algorithms. When a smart building is commissioned there is no historical data that could be used to train these algorithms. On-line Reinforcement Learning (RL) algorithms have shown significant promise, but their deployment carries a significant risk, because as the RL agent initially explores its action space it could cause significant discomfort to the building residents. In this paper we present ReLBOT, a new technique that uses transfer learning in conjunction with deep RL to transfer knowledge from an existing, optimized smart building, to the newly commissioning building, to reduce the adverse impact of the reinforcement learning agent's warm-up period. We demonstrate improvements of up to 6.2 times in the duration, and up to 132 times in prediction variance for the reinforcement learning agent's warm-up period.
Abstract:The pervasive application of artificial intelligence and machine learning algorithms is transforming many industries and aspects of the human experience. One very important industry trend is the move to convert existing human dwellings to smart buildings, and to create new smart buildings. Smart buildings aim to mitigate climate change by reducing energy consumption and associated carbon emissions. To accomplish this, they leverage artificial intelligence, big data, and machine learning algorithms to learn and optimize system performance. These fields of research are currently very rapidly evolving and advancing, but there has been very little guidance to help engineers and architects working on smart buildings apply artificial intelligence algorithms and technologies in a systematic and effective manner. In this paper we present B-SMART: the first reference architecture for autonomic smart buildings. B-SMART facilitates the application of artificial intelligence techniques and technologies to smart buildings by decoupling conceptually distinct layers of functionality and organizing them into an autonomic control loop. We also present a case study illustrating how B-SMART can be applied to accelerate the introduction of artificial intelligence into an existing smart building.
Abstract:Many complex systems operating far from the equilibrium exhibit stochastic dynamics that can be described by a Langevin equation. Inferring Langevin equations from data can reveal how transient dynamics of such systems give rise to their function. However, dynamics are often inaccessible directly and can be only gleaned through a stochastic observation process, which makes the inference challenging. Here we present a non-parametric framework for inferring the Langevin equation, which explicitly models the stochastic observation process and non-stationary latent dynamics. The framework accounts for the non-equilibrium initial and final states of the observed system and for the possibility that the system's dynamics define the duration of observations. Omitting any of these non-stationary components results in incorrect inference, in which erroneous features arise in the dynamics due to non-stationary data distribution. We illustrate the framework using models of neural dynamics underlying decision making in the brain.