Abstract:We investigate the dynamics of labial constriction trajectories during the production of /b/ and /m/ in English and Mandarin. We find that, across languages and contexts, the ratio of instantaneous displacement to instantaneous velocity generally follows an exponential decay curve from movement onset to movement offset. We formalize this empirical discovery in a differential equation and, in combination with an assumption of point attractor dynamics, derive a nonlinear second-order dynamical system describing labial constriction trajectories. The equation has only two parameters, T and r. T corresponds to the target state and r corresponds to movement rapidity. Thus, each of the parameters corresponds to a phonetically relevant dimension of control. Nonlinear regression demonstrates that the model provides excellent fits to individual movement trajectories. Moreover, trajectories simulated from the model qualitatively match empirical trajectories, and capture key kinematic variables like duration, peak velocity, and time to achieve peak velocity. The model constitutes a proposal for the dynamics of individual articulatory movements, and thus offers a novel foundation from which to understand additional influences on articulatory kinematics like prosody, inter-movement coordination, and stochastic noise.
Abstract:We propose and computationally implement a dynamic neural model of lexical meaning, and experimentally test its behavioral predictions. We demonstrate the architecture and behavior of the model using as a test case the English lexical item 'have', focusing on its polysemous use. In the model, 'have' maps to a semantic space defined by two continuous conceptual dimensions, connectedness and control asymmetry, previously proposed to parameterize the conceptual system for language. The mapping is modeled as coupling between a neural node representing the lexical item and neural fields representing the conceptual dimensions. While lexical knowledge is modeled as a stable coupling pattern, real-time lexical meaning retrieval is modeled as the motion of neural activation patterns between metastable states corresponding to semantic interpretations or readings. Model simulations capture two previously reported empirical observations: (1) contextual modulation of lexical semantic interpretation, and (2) individual variation in the magnitude of this modulation. Simulations also generate a novel prediction that the by-trial relationship between sentence reading time and acceptability should be contextually modulated. An experiment combining self-paced reading and acceptability judgments replicates previous results and confirms the new model prediction. Altogether, results support a novel perspective on lexical polysemy: that the many related meanings of a word are metastable neural activation states that arise from the nonlinear dynamics of neural populations governing interpretation on continuous semantic dimensions.
Abstract:Previous work has demonstrated that words are hyperarticulated on dimensions of speech that differentiate them from a minimal pair competitor. This phenomenon has been termed contrastive hyperarticulation (CH). We present a dynamic neural field (DNF) model of voice onset time (VOT) planning that derives CH from an inhibitory influence of the minimal pair competitor during planning. We test some predictions of the model with a novel experiment investigating CH of voiceless stop consonant VOT in pseudowords. The results demonstrate a CH effect in pseudowords, consistent with a basis for the effect in the real-time planning and production of speech. The scope and magnitude of CH in pseudowords was reduced compared to CH in real words, consistent with a role for interactive activation between lexical and phonological levels of planning. We discuss the potential of our model to unify an apparently disparate set of phenomena, from CH to phonological neighborhood effects to phonetic trace effects in speech errors.