Abstract:Three-dimensional (3D) multi-slab acquisition is a technique frequently employed in high-resolution diffusion-weighted MRI in order to achieve the best signal-to-noise ratio (SNR) efficiency. However, this technique is limited by slab boundary artifacts that cause intensity fluctuations and aliasing between slabs which reduces the accuracy of anatomical imaging. Addressing this issue is crucial for advancing diffusion MRI quality and making high-resolution imaging more feasible for clinical and research applications. In this work, we propose a regularized slab profile encoding (PEN) method within a Plug-and-Play ADMM framework, incorporating multi-scale energy (MuSE) regularization to effectively improve the slab combined reconstruction. Experimental results demonstrate that the proposed method significantly improves image quality compared to non-regularized and TV-regularized PEN approaches. The regularized PEN framework provides a more robust and efficient solution for high-resolution 3D diffusion MRI, potentially enabling clearer, more reliable anatomical imaging across various applications.
Abstract:We introduce a structured low rank algorithm for the calibration-free compensation of field inhomogeneity artifacts in Echo Planar Imaging (EPI) MRI data. We acquire the data using two EPI readouts that differ in echo-time (TE). Using time segmentation, we reformulate the field inhomogeneity compensation problem as the recovery of an image time series from highly undersampled Fourier measurements. The temporal profile at each pixel is modeled as a single exponential, which is exploited to fill in the missing entries. We show that the exponential behavior at each pixel, along with the spatial smoothness of the exponential parameters, can be exploited to derive a 3D annihilation relation in the Fourier domain. This relation translates to a low rank property on a structured multi-fold Toeplitz matrix, whose entries correspond to the measured k-space samples. We introduce a fast two-step algorithm for the completion of the Toeplitz matrix from the available samples. In the first step, we estimate the null space vectors of the Toeplitz matrix using only its fully sampled rows. The null space is then used to estimate the signal subspace, which facilitates the efficient recovery of the time series of images. We finally demonstrate the proposed approach on spherical MR phantom data and human data and show that the artifacts are significantly reduced. The proposed approach could potentially be used to compensate for time varying field map variations in dynamic applications such as functional MRI.