Abstract:The Terahertz band holds a promise to enable both super-accurate sensing and ultra-fast communication. However, challenges arise that severe Doppler effects call for a waveform with high Doppler robustness while severe propagation path loss urges for an ultra-massive multiple-input multiple-output (UM-MIMO) structure. To tackle these challenges, hybrid beamforming with orthogonal delay-Doppler multiplexing modulation (ODDM) is investigated in this paper. First, the integration of delay-Doppler waveform and MIMO is explored by deriving a hybrid beamforming-based UM-MIMO ODDM input-output relation. Then, a multi-dimension sensing algorithm on target azimuth angle, elevation angle, range and velocity is proposed, which features low complexity and high accuracy. Finally, a sensing-centric hybrid beamforming is proposed to design the sensing combiner by minimizing the Cram\'er-Rao lower bounds (CRLB) of angles. After that, the precoder that affects both communication and sensing is then designed to maximize the spectral efficiency. Numerical results show that the sensing accuracy of the proposed sensing algorithm is sufficiently close to CRLB. Moreover, the proposed hybrid beamforming design allows to achieve maximal spectral efficiency, millimeter-level range estimation accuracy, millidegree-level angle estimation accuracy and millimeter-per-second-level velocity estimation accuracy. Take-away lessons are two-fold. Combiner design is critical especially for sensing, which is commonly neglected in hybrid beamforming design for communication. Furthermore, the optimization problems for communication and sensing can be decoupled and solved independently, significantly reducing the computational complexity of the THz monostatic ISAC system.