Abstract:In this paper, we propose a variable-length wideband channel state information (CSI) feedback scheme for Frequency Division Duplex (FDD) massive multiple-input multipleoutput (MIMO) systems in U6G band (6425MHz-7125MHz). Existing compressive sensing (CS)-based and deep learning (DL)- based schemes preprocess the channel by truncating it in the angular-delay domain. However, the energy leakage effect caused by the Discrete Fourier Transform (DFT) basis will be more serious and leads to a bottleneck in recovery accuracy when applied to wideband channels such as those in U6G. To solve this problem, we introduce the Loewner Interpolation (LI) framework which generates a set of dynamic bases based on the current CSI matrix, enabling highly efficient compression in the frequency domain. Then, the LI basis is further compressed in the spatial domain through a neural network. To achieve a flexible trade-off between feedback overhead and recovery accuracy, we design a rateless auto-encoder trained with tail dropout and a multi-objective learning schedule, supporting variable-length feedback with a singular model. Meanwhile, the codewords are ranked by importance, ensuring that the base station (BS) can still maintain acceptable reconstruction performance under limited feedback with tail erasures. Furthermore, an adaptive quantization strategy is developed for the feedback framework to enhance robustness. Simulation results demonstrate that the proposed scheme could achieve higher CSI feedback accuracy with less or equal feedback overhead, and improve spectral efficiency compared with baseline schemes.
Abstract:The rapid proliferation of Artificial Intelligence Generated Content has precipitated a crisis of trust and urgent regulatory demands. However, existing identification tools suffer from fragmentation and a lack of support for visible compliance marking. To address these gaps, we introduce the \textbf{UniMark}, an open-source, unified framework for multimodal content governance. Our system features a modular unified engine that abstracts complexities across text, image, audio, and video modalities. Crucially, we propose a novel dual-operation strategy, natively supporting both \emph{Hidden Watermarking} for copyright protection and \emph{Visible Marking} for regulatory compliance. Furthermore, we establish a standardized evaluation framework with three specialized benchmarks (Image/Video/Audio-Bench) to ensure rigorous performance assessment. This toolkit bridges the gap between advanced algorithms and engineering implementation, fostering a more transparent and secure digital ecosystem.
Abstract:The Terahertz band holds a promise to enable both super-accurate sensing and ultra-fast communication. However, challenges arise that severe Doppler effects call for a waveform with high Doppler robustness while severe propagation path loss urges for an ultra-massive multiple-input multiple-output (UM-MIMO) structure. To tackle these challenges, hybrid beamforming with orthogonal delay-Doppler multiplexing modulation (ODDM) is investigated in this paper. First, the integration of delay-Doppler waveform and MIMO is explored by deriving a hybrid beamforming-based UM-MIMO ODDM input-output relation. Then, a multi-dimension sensing algorithm on target azimuth angle, elevation angle, range and velocity is proposed, which features low complexity and high accuracy. Finally, a sensing-centric hybrid beamforming is proposed to design the sensing combiner by minimizing the Cram\'er-Rao lower bounds (CRLB) of angles. After that, the precoder that affects both communication and sensing is then designed to maximize the spectral efficiency. Numerical results show that the sensing accuracy of the proposed sensing algorithm is sufficiently close to CRLB. Moreover, the proposed hybrid beamforming design allows to achieve maximal spectral efficiency, millimeter-level range estimation accuracy, millidegree-level angle estimation accuracy and millimeter-per-second-level velocity estimation accuracy. Take-away lessons are two-fold. Combiner design is critical especially for sensing, which is commonly neglected in hybrid beamforming design for communication. Furthermore, the optimization problems for communication and sensing can be decoupled and solved independently, significantly reducing the computational complexity of the THz monostatic ISAC system.