Abstract:Since the inception of the Transformer architecture in 2017, Large Language Models (LLMs) such as GPT and BERT have evolved significantly, impacting various industries with their advanced capabilities in language understanding and generation. These models have shown potential to transform the medical field, highlighting the necessity for specialized evaluation frameworks to ensure their effective and ethical deployment. This comprehensive survey delineates the extensive application and requisite evaluation of LLMs within healthcare, emphasizing the critical need for empirical validation to fully exploit their capabilities in enhancing healthcare outcomes. Our survey is structured to provide an in-depth analysis of LLM applications across clinical settings, medical text data processing, research, education, and public health awareness. We begin by exploring the roles of LLMs in different medical applications, detailing how they are evaluated based on their performance in tasks such as clinical application, medical text data processing, information retrieval, data analysis, medical scientific writing, educational content generation etc. The subsequent sections delve into the methodologies employed in these evaluations, discussing the benchmarks and metrics used to assess the models' effectiveness, accuracy, and ethical alignment. Through this survey, we aim to equip healthcare professionals, researchers, and policymakers with a comprehensive understanding of the potential strengths and limitations of LLMs in medical applications. By providing detailed insights into the evaluation processes and the challenges faced in integrating LLMs into healthcare, this survey seeks to guide the responsible development and deployment of these powerful models, ensuring they are harnessed to their full potential while maintaining stringent ethical standards.
Abstract:We introduce a framework for AI-based medical consultation system with knowledge graph embedding and reinforcement learning components and its implement. Our implement of this framework leverages knowledge organized as a graph to have diagnosis according to evidence collected from patients recurrently and dynamically. According to experiment we designed for evaluating its performance, it archives a good result. More importantly, for getting better performance, researchers can implement it on this framework based on their innovative ideas, well designed experiments and even clinical trials.