Abstract:This paper introduces a new ontology for Materials Science Laboratory Equipment, termed MSLE. A fundamental issue with materials science laboratory (hereafter lab) equipment in the real world is that scientists work with various types of equipment with multiple specifications. For example, there are many electron microscopes with different parameters in chemical and physical labs. A critical development to unify the description is to build an equipment domain ontology as basic semantic knowledge and to guide the user to work with the equipment appropriately. Here, we propose to develop a consistent ontology for equipment, the MSLE ontology. In the MSLE, two main existing ontologies, the Semantic Sensor Network (SSN) and the Material Vocabulary (MatVoc), have been integrated into the MSLE core to build a coherent ontology. Since various acronyms and terms have been used for equipment, this paper proposes an approach to use a Simple Knowledge Organization System (SKOS) to represent the hierarchical structure of equipment terms. Equipment terms were collected in various languages and abbreviations and coded into the MSLE using the SKOS model. The ontology development was conducted in close collaboration with domain experts and focused on the large-scale devices for materials characterization available in our research group. Competency questions are expected to be addressed through the MSLE ontology. Constraints are modeled in the Shapes Query Language (SHACL); a prototype is shown and validated to show the value of the modeling constraints.
Abstract:Data mining techniques can be used to discover useful patterns by exploring and analyzing data and it's feasible to synergitically combine machine learning tools to discover fuzzy classification rules.In this paper, an adaptive Neuro fuzzy network with TSK fuzzy type and an improved quantum subtractive clustering has been developed. Quantum clustering (QC) is an intuition from quantum mechanics which uses Schrodinger potential and time-consuming gradient descent method. The principle advantage and shortcoming of QC is analyzed and based on its shortcomings, an improved algorithm through a subtractive clustering method is proposed. Cluster centers represent a general model with essential characteristics of data which can be use as premise part of fuzzy rules.The experimental results revealed that proposed Anfis based on quantum subtractive clustering yielded good approximation and generalization capabilities and impressive decrease in the number of fuzzy rules and network output accuracy in comparison with traditional methods.
Abstract:In recent years, multi-label classification problem has become a controversial issue. In this kind of classification, each sample is associated with a set of class labels. Ensemble approaches are supervised learning algorithms in which an operator takes a number of learning algorithms, namely base-level algorithms and combines their outcomes to make an estimation. The simplest form of ensemble learning is to train the base-level algorithms on random subsets of data and then let them vote for the most popular classifications or average the predictions of the base-level algorithms. In this study, an ensemble learning method is proposed for improving multi-label classification evaluation criteria. We have compared our method with well-known base-level algorithms on some data sets. Experiment results show the proposed approach outperforms the base well-known classifiers for the multi-label classification problem.