Abstract:This paper presents two different evolutionary systems - Evolutionary Programming Network (EPNet) and Novel Evolutions Strategy (NES) Algorithm. EPNet does both training and architecture evolution simultaneously, whereas NES does a fixed network and only trains the network. Five mutation operators proposed in EPNet to reflect the emphasis on evolving ANNs behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. On the other hand, NES uses two new genetic operators - subpopulation-based max-mean arithmetical crossover and time-variant mutation. The above-mentioned two algorithms have been tested on a number of benchmark problems, such as the medical diagnosis problems (breast cancer, diabetes, and heart disease). The results and the comparison between them are also presented in this paper.