Abstract:This paper presents a system developed for Task 1 of the COLING 2025 Workshop on Detecting AI-Generated Content, focusing on the binary classification of machine-generated versus human-written text. Our approach utilizes an ensemble of models, with weights assigned according to each model's inverse perplexity, to enhance classification accuracy. For the English text detection task, we combined RoBERTa-base, RoBERTa-base with the OpenAI detector, and BERT-base-cased, achieving a Macro F1-score of 0.7458, which ranked us 12th out of 35 teams. We ensembled RemBERT, XLM-RoBERTa-base, and BERT-base-multilingual-case for the multilingual text detection task, employing the same inverse perplexity weighting technique. This resulted in a Macro F1-score of 0.7513, positioning us 4th out of 25 teams. Our results demonstrate the effectiveness of inverse perplexity weighting in improving the robustness of machine-generated text detection across both monolingual and multilingual settings, highlighting the potential of ensemble methods for this challenging task.
Abstract:This paper presents our approach for Task 3 of the GenAI content detection workshop at COLING-2025, focusing on Cross-Domain Machine-Generated Text (MGT) Detection. We propose an ensemble of fine-tuned transformer models, enhanced by inverse perplexity weighting, to improve classification accuracy across diverse text domains. For Subtask A (Non-Adversarial MGT Detection), we combined a fine-tuned RoBERTa-base model with an OpenAI detector-integrated RoBERTa-base model, achieving an aggregate TPR score of 0.826, ranking 10th out of 23 detectors. In Subtask B (Adversarial MGT Detection), our fine-tuned RoBERTa-base model achieved a TPR score of 0.801, securing 8th out of 22 detectors. Our results demonstrate the effectiveness of inverse perplexity-based weighting for enhancing generalization and performance in both non-adversarial and adversarial MGT detection, highlighting the potential for transformer models in cross-domain AI-generated content detection.