Abstract:Industrial networks are undergoing rapid transformation driven by the convergence of emerging technologies that are revolutionizing conventional workflows, enhancing operational efficiency, and fundamentally redefining the industrial landscape across diverse sectors. Amidst this revolution, Digital Twin (DT) emerges as a transformative innovation that seamlessly integrates real-world systems with their virtual counterparts, bridging the physical and digital realms. In this article, we present a comprehensive survey of the emerging DT-enabled services and applications across industries, beginning with an overview of DT fundamentals and its components to a discussion of key enabling technologies for DT. Different from literature works, we investigate and analyze the capabilities of DT across a wide range of industrial services, including data sharing, data offloading, integrated sensing and communication, content caching, resource allocation, wireless networking, and metaverse. In particular, we present an in-depth technical discussion of the roles of DT in industrial applications across various domains, including manufacturing, healthcare, transportation, energy, agriculture, space, oil and gas, as well as robotics. Throughout the technical analysis, we delve into real-time data communications between physical and virtual platforms to enable industrial DT networking. Subsequently, we extensively explore and analyze a wide range of major privacy and security issues in DT-based industry. Taxonomy tables and the key research findings from the survey are also given, emphasizing important insights into the significance of DT in industries. Finally, we point out future research directions to spur further research in this promising area.