Abstract:Electricity generation from burning fossil fuels is one of the major contributors to global warming. Renewable energy sources are a viable alternative to produce electrical energy and to reduce the emission from the power industry. These energy sources are the building blocks of green energy, which all have different characteristics. Their availabilities are also diverse, depending on geographical locations and other parameters. Low implementation cost and distributed availability all over the world uplifts their popularity exponentially. Therefore, it has unlocked opportunities for consumers to produce electricity locally and use it on-site, which reduces dependency on centralized utility companies. The research considers two main objectives: the prediction of wind speed that simplifies wind farm planning and feasibility study. Secondly, the need to understand the dependency structure of the wind speeds of multiple distant locations. To address the first objective, twelve artificial intelligence algorithms were used for wind speed prediction from collected meteorological parameters. The model performances were compared to determine the wind speed prediction accuracy. The results show a deep learning approach, long short-term memory (LSTM) outperforms other models with the highest accuracy of 97.8%. For dependency, a multivariate cumulative distribution function, Copula, was used to find the joint distribution of two or more distant location wind speeds, followed by a case study. We found that the appropriate copula family and the parameters vary based on the distance in between. For the case study, Joe-Frank (BB8) copula shows an efficient joint distribution fit for a wind speed pair with a standard error of 0.0094. Finally, some insights about the uncertainty aspects of wind speed dependency were addressed.
Abstract:Climate change is one of the most concerning issues of this century. Emission from electric power generation is a crucial factor that drives the concern to the next level. Renewable energy sources are widespread and available globally, however, one of the major challenges is to understand their characteristics in a more informative way. This paper proposes the prediction of wind speed that simplifies wind farm planning and feasibility study. Twelve artificial intelligence algorithms were used for wind speed prediction from collected meteorological parameters. The model performances were compared to determine the wind speed prediction accuracy. The results show a deep learning approach, long short-term memory (LSTM) outperforms other models with the highest accuracy of 97.8%.