Abstract:Tornadoes are the most violent of all atmospheric storms. In a typical year, the United States experiences hundreds of tornadoes with associated damages on the order of one billion dollars. Community preparation and resilience would benefit from accurate predictions of these economic losses, particularly as populations in tornado-prone areas continue to increase in density and extent. Here, we use artificial neural networks to predict tornado-induced property damage using publicly available data. We find that the large number of tornadoes which cause zero property damage (30.6% of the data) poses a challenge for predictive models. We developed a model that predicts whether a tornado will cause property damage to a high degree of accuracy (out of sample accuracy = 0.829 and AUROC = 0.873). Conditional on a tornado causing damage, another model predicts the amount of damage. When combined, these two models yield an expected value for the amount of property damage caused by a tornado event. From the best-performing models (out of sample mean squared error = 0.089 and R2 = 0.473), we provide an interactive, gridded map of monthly expected values for the year 2018. One major weakness is that the model predictive power is optimized with log-transformed, mean-normalized property damages, however this leads to large natural-scale residuals for the most destructive tornadoes. The predictive capacity of this model along with an interactive interface may provide an opportunity for science-informed tornado disaster planning.