Abstract:Antibiotic resistance presents a growing global health crisis, demanding new therapeutic strategies that target novel bacterial mechanisms. Recent advances in protein structure prediction and machine learning-driven molecule generation offer a promising opportunity to accelerate drug discovery. However, practical guidance on selecting and integrating these models into real-world pipelines remains limited. In this study, we develop an end-to-end, artificial intelligence-guided antibiotic discovery pipeline that spans target identification to compound realization. We leverage structure-based clustering across predicted proteomes of multiple pathogens to identify conserved, essential, and non-human-homologous targets. We then systematically evaluate six leading 3D-structure-aware generative models$\unicode{x2014}$spanning diffusion, autoregressive, graph neural network, and language model architectures$\unicode{x2014}$on their usability, chemical validity, and biological relevance. Rigorous post-processing filters and commercial analogue searches reduce over 100 000 generated compounds to a focused, synthesizable set. Our results highlight DeepBlock and TamGen as top performers across diverse criteria, while also revealing critical trade-offs between model complexity, usability, and output quality. This work provides a comparative benchmark and blueprint for deploying artificial intelligence in early-stage antibiotic development.
Abstract:Accurate prediction of drug-target interactions is critical for advancing drug discovery. By reducing time and cost, machine learning and deep learning can accelerate this discovery process. Our approach utilises the powerful Barlow Twins architecture for feature-extraction while considering the structure of the target protein, achieving state-of-the-art predictive performance against multiple established benchmarks. The use of gradient boosting machine as the underlying predictor ensures fast and efficient predictions without the need for large computational resources. In addition, we further benchmarked new baselines against existing methods. Together, these innovations improve the efficiency and effectiveness of drug-target interaction predictions, providing robust tools for accelerating drug development and deepening the understanding of molecular interactions.
Abstract:The success of drug discovery and development relies on the precise prediction of molecular activities and properties. While in silico molecular property prediction has shown remarkable potential, its use has been limited so far to assays for which large amounts of data are available. In this study, we use a fine-tuned large language model to integrate biological assays based on their textual information, coupled with Barlow Twins, a Siamese neural network using a novel self-supervised learning approach. This architecture uses both assay information and molecular fingerprints to extract the true molecular information. TwinBooster enables the prediction of properties of unseen bioassays and molecules by providing state-of-the-art zero-shot learning tasks. Remarkably, our artificial intelligence pipeline shows excellent performance on the FS-Mol benchmark. This breakthrough demonstrates the application of deep learning to critical property prediction tasks where data is typically scarce. By accelerating the early identification of active molecules in drug discovery and development, this method has the potential to help streamline the identification of novel therapeutics.