Abstract:Classification of large and dense networks based on topology is very difficult due to the computational challenges of extracting meaningful topological features from real-world networks. In this paper we present a computationally tractable approach to topological classification of networks by using principled theory from persistent homology and optimal transport to define a novel vector representation for topological features. The proposed vector space is based on the Wasserstein distance between persistence barcodes. The 1-skeleton of the network graph is employed to obtain 1-dimensional persistence barcodes that represent connected components and cycles. These barcodes and the corresponding Wasserstein distance can be computed very efficiently. The effectiveness of the proposed vector space is demonstrated using support vector machines to classify simulated networks and measured functional brain networks.
Abstract:The topological patterns exhibited by many real-world networks motivate the development of topology-based methods for assessing the similarity of networks. However, extracting topological structure is difficult, especially for large and dense networks whose node degrees range over multiple orders of magnitude. In this paper, we propose a novel and computationally practical topological clustering method that clusters complex networks with intricate topology using principled theory from persistent homology and optimal transport. Such networks are aggregated into clusters through a centroid-based clustering strategy based on both their topological and geometric structure, preserving correspondence between nodes in different networks. The notions of topological proximity and centroid are characterized using a novel and efficient approach to computation of the Wasserstein distance and barycenter for persistence barcodes associated with connected components and cycles. The proposed method is demonstrated to be effective using both simulated networks and measured functional brain networks.