Abstract:Photovoltaic (PV) power production increased drastically in Europe throughout the last years. About the 6% of electricity in Italy comes from PV and for an efficient management of the power grid an accurate and reliable forecasting of production would be needed. Starting from a dataset of electricity production of 65 Italian solar plants for the years 2011-2012 we investigate the possibility to forecast daily production from one to ten days of lead time without using on site measurements. Our study is divided in two parts: an assessment of the predictability of meteorological variables using weather forecasts and an analysis on the application of data-driven modelling in predicting solar power production. We calibrate a SVM model using available observations and then we force the same model with the predicted variables from weather forecasts with a lead time from one to ten days. As expected, solar power production is strongly influenced by cloudiness and clear sky, in fact we observe that while during summer we obtain a general error under the 10% (slightly lower in south Italy), during winter the error is abundantly above the 20%.
Abstract:In the last decades, complex networks theory significantly influenced other disciplines on the modeling of both static and dynamic aspects of systems observed in nature. This work aims to investigate the effects of networks' topological features on the dynamics of an evolutionary algorithm, considering in particular the ability to find a large number of optima on multi-modal problems. We introduce a novel spatially-structured evolutionary algorithm and we apply it on two combinatorial problems: ONEMAX and the multi-modal NMAX. Considering three different network models we investigate the relationships between their features, algorithm's convergence and its ability to find multiple optima (for the multi-modal problem). In order to perform a deeper analysis we investigate the introduction of weighted graphs with time-varying weights. The results show that networks with a large Average Path Length lead to an higher number of optima and a consequent slow exploration dynamics (i.e. low First Hitting Time). Furthermore, the introduction of weighted networks shows the possibility to tune algorithm's dynamics during its execution with the parameter related with weights' change. This work gives a first answer about the effects of various graph topologies on the diversity of evolutionary algorithms and it describes a simple but powerful algorithmic framework which allows to investigate many aspects of ssEAs dynamics.