Abstract:Purpose: High-speed video (HSV) phase detection (PD) segmentation is vital in nuclear reactors, chemical processing, and electronics cooling for detecting vapor, liquid, and microlayer phases. Traditional segmentation models face pixel-level accuracy and generalization issues in multimodal data. MSEG-VCUQ introduces VideoSAM, a hybrid framework leveraging convolutional neural networks (CNNs) and transformer-based vision models to enhance segmentation accuracy and generalizability across complex multimodal PD tasks. Methods: VideoSAM combines U-Net CNN and the Segment Anything Model (SAM) for advanced feature extraction and segmentation across diverse HSV PD modalities, spanning fluids like water, FC-72, nitrogen, and argon under varied heat flux conditions. The framework also incorporates uncertainty quantification (UQ) to assess pixel-based discretization errors, delivering reliable metrics such as contact line density and dry area fraction under experimental conditions. Results: VideoSAM outperforms SAM and modality-specific CNN models in segmentation accuracy, excelling in environments with complex phase boundaries, overlapping bubbles, and dynamic liquid-vapor interactions. Its hybrid architecture supports cross-dataset generalization, adapting effectively to varying modalities. The UQ module provides accurate error estimates, enhancing the reliability of segmentation outputs for advanced HSV PD research. Conclusion: MSEG-VCUQ, via VideoSAM, offers a robust solution for HSV PD segmentation, addressing previous limitations with advanced deep learning and UQ techniques. The open-source datasets and tools introduced enable scalable, precise, and adaptable segmentation for multimodal PD datasets, supporting advancements in HSV analysis and autonomous experimentation. The codes and data used for this paper are publicly available at: \url{https://github.com/chikap421/mseg_vcuq}
Abstract:High-speed video (HSV) segmentation is essential for analyzing dynamic physical processes in scientific and industrial applications, such as boiling heat transfer. Existing models like U-Net struggle with generalization and accurately segmenting complex bubble formations. We present VideoSAM, a specialized adaptation of the Segment Anything Model (SAM), fine-tuned on a diverse HSV dataset for phase detection. Through diverse experiments, VideoSAM demonstrates superior performance across four fluid environments -- Water, FC-72, Nitrogen, and Argon -- significantly outperforming U-Net in complex segmentation tasks. In addition to introducing VideoSAM, we contribute an open-source HSV segmentation dataset designed for phase detection, enabling future research in this domain. Our findings underscore VideoSAM's potential to set new standards in robust and accurate HSV segmentation. The code and dataset used in this study are available online at https://github.com/chikap421/videosam .