Abstract:We report the first-time recovery of a fresh meteorite fall using a drone and a machine learning algorithm. A fireball on the 1st April 2021 was observed over Western Australia by the Desert Fireball Network, for which a fall area was calculated for the predicted surviving mass. A search team arrived on site and surveyed 5.1 km2 area over a 4-day period. A convolutional neural network, trained on previously-recovered meteorites with fusion crusts, processed the images on our field computer after each flight. meteorite candidates identified by the algorithm were sorted by team members using two user interfaces to eliminate false positives. Surviving candidates were revisited with a smaller drone, and imaged in higher resolution, before being eliminated or finally being visited in-person. The 70 g meteorite was recovered within 50 m of the calculated fall line using, demonstrating the effectiveness of this methodology which will facilitate the efficient collection of many more observed meteorite falls.
Abstract:We present a novel methodology for recovering meteorite falls observed and constrained by fireball networks, using drones and machine learning algorithms. This approach uses images of the local terrain for a given fall site to train an artificial neural network, designed to detect meteorite candidates. We have field tested our methodology to show a meteorite detection rate between 75-97%, while also providing an efficient mechanism to eliminate false-positives. Our tests at a number of locations within Western Australia also showcase the ability for this training scheme to generalize a model to learn localized terrain features. Our model-training approach was also able to correctly identify 3 meteorites in their native fall sites, that were found using traditional searching techniques. Our methodology will be used to recover meteorite falls in a wide range of locations within globe-spanning fireball networks.