Abstract:Artificial neural networks have been shown to be state-of-the-art machine learning models in a wide variety of applications, including natural language processing and image recognition. However, building a performant neural network is a laborious task and requires substantial computing power. Neural Architecture Search (NAS) addresses this issue by an automatic selection of the optimal network from a set of potential candidates. While many NAS methods still require training of (some) neural networks, zero-cost proxies promise to identify the optimal network without training. In this work, we propose the zero-cost proxy Network Expressivity by Activation Rank (NEAR). It is based on the effective rank of the pre- and post-activation matrix, i.e., the values of a neural network layer before and after applying its activation function. We demonstrate the cutting-edge correlation between this network score and the model accuracy on NAS-Bench-101 and NATS-Bench-SSS/TSS. In addition, we present a simple approach to estimate the optimal layer sizes in multi-layer perceptrons. Furthermore, we show that this score can be utilized to select hyperparameters such as the activation function and the neural network weight initialization scheme.
Abstract:The optimization algorithm and its hyperparameters can significantly affect the training speed and resulting model accuracy in machine learning applications. The wish list for an ideal optimizer includes fast and smooth convergence to low error, low computational demand, and general applicability. Our recently introduced continual resilient (CoRe) optimizer has shown superior performance compared to other state-of-the-art first-order gradient-based optimizers for training lifelong machine learning potentials. In this work we provide an extensive performance comparison of the CoRe optimizer and nine other optimization algorithms including the Adam optimizer and resilient backpropagation (RPROP) for diverse machine learning tasks. We analyze the influence of different hyperparameters and provide generally applicable values. The CoRe optimizer yields best or competitive performance in every investigated application, while only one hyperparameter needs to be changed depending on mini-batch or batch learning.
Abstract:Machine learning potentials (MLPs) trained on accurate quantum chemical data can retain the high accuracy, while inflicting little computational demands. On the downside, they need to be trained for each individual system. In recent years, a vast number of MLPs has been trained from scratch because learning additional data typically requires to train again on all data to not forget previously acquired knowledge. Additionally, most common structural descriptors of MLPs cannot represent efficiently a large number of different chemical elements. In this work, we tackle these problems by introducing element-embracing atom-centered symmetry functions (eeACSFs) which combine structural properties and element information from the periodic table. These eeACSFs are a key for our development of a lifelong machine learning potential (lMLP). Uncertainty quantification can be exploited to transgress a fixed, pre-trained MLP to arrive at a continuously adapting lMLP, because a predefined level of accuracy can be ensured. To extend the applicability of an lMLP to new systems, we apply continual learning strategies to enable autonomous and on-the-fly training on a continuous stream of new data. For the training of deep neural networks, we propose the continual resilient (CoRe) optimizer and incremental learning strategies relying on rehearsal of data, regularization of parameters, and the architecture of the model.