Abstract:Dynamic multi-relational graphs are an expressive relational representation for data enclosing entities and relations of different types, and where relationships are allowed to vary in time. Addressing predictive tasks over such data requires the ability to find structure embeddings that capture the diversity of the relationships involved, as well as their dynamic evolution. In this work, we establish a novel class of challenging tasks for dynamic multi-relational graphs involving out-of-domain link prediction, where the relationship being predicted is not available in the input graph. We then introduce a novel Graph Neural Network model, named GOOD, designed specifically to tackle the out-of-domain generalization problem. GOOD introduces a novel design concept for multi-relation embedding aggregation, based on the idea that good representations are such when it is possible to disentangle the mixing proportions of the different relational embeddings that have produced it. We also propose five benchmarks based on two retail domains, where we show that GOOD can effectively generalize predictions out of known relationship types and achieve state-of-the-art results. Most importantly, we provide insights into problems where out-of-domain prediction might be preferred to an in-domain formulation, that is, where the relationship to be predicted has very few positive examples.
Abstract:Global retailers have assortments that contain hundreds of thousands of products that can be linked by several types of relationships like style compatibility, "bought together", "watched together", etc. Graphs are a natural representation for assortments, where products are nodes and relations are edges. Relations like style compatibility are often produced by a manual process and therefore do not cover uniformly the whole graph. We propose to use inductive learning to enhance a graph encoding style compatibility of a fashion assortment, leveraging rich node information comprising textual descriptions and visual data. Then, we show how the proposed graph enhancement improves substantially the performance on transductive tasks with a minor impact on graph sparsity.