Abstract:The development and identification of effective optimization algorithms for non-convex real-world problems is a challenge in global optimization. Because theoretical performance analysis is difficult, and problems based on models of real-world systems are often computationally expensive, several artificial performance test problems and test function generators have been proposed for empirical comparative assessment and analysis of metaheuristic optimization algorithms. These test problems however often lack the complex function structures and forthcoming difficulties that can appear in real-world problems. This communication presents a method to systematically build test problems with various types and degrees of difficulty. By weighted composition of parameterized random fields, challenging test functions with tunable function features such as, variance contribution distribution, interaction order, and nonlinearity can be constructed. The method is described, and its applicability to optimization performance analysis is described by means of a few basic examples. The method aims to set a step forward in the systematic generation of global optimization test problems, which could lead to a better understanding of the performance of optimization algorithms on problem types with particular characteristics. On request an introductive MATLAB implementation of a test function generator based on the presented method is available.
Abstract:In the context of industrial engineering, it is important to integrate efficient computational optimization methods in the product development process. Some of the most challenging simulation-based engineering design optimization problems are characterized by: a large number of design variables, the absence of analytical gradients, highly non-linear objectives and a limited function evaluation budget. Although a huge variety of different optimization algorithms is available, the development and selection of efficient algorithms for problems with these industrial relevant characteristics, remains a challenge. In this communication, a hybrid variant of Differential Evolution (DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the framework of DE, in order to improve optimization efficiency on problems with the previously mentioned characteristics. The performance of the resulting derivative-free algorithm is compared with other state-of-the-art DE variants on 25 commonly used benchmark functions, under tight function evaluation budget constraints of 1000 evaluations. The experimental results indicate that the new algorithm performs excellent on the 'difficult' (high dimensional, multi-modal, inseparable) test functions. The operations used in the proposed mutation scheme, are computationally inexpensive, and can be easily implemented in existing differential evolution variants or other population-based optimization algorithms by a few lines of program code as an non-invasive optional setting. Besides the applicability of the presented algorithm by itself, the described concepts can serve as a useful and interesting addition to the algorithmic operators in the frameworks of heuristics and evolutionary optimization and computing.
Abstract:Research suggests that a Motorcycle Autonomous Emergency Braking system (MAEB) could influence 25% of the crashes involving powered two wheelers (PTWs). By automatically slowing down a host PTW of up to 10 km/h in inevitable collision scenarios, MAEB could potentially mitigate the crash severity for the riders. The feasibility of automatic decelerations of motorcycles was shown via field trials in controlled environment. However, the feasibility of correct MAEB triggering in the real traffic context is still unclear. In particular, MAEB requires an accurate obstacle detection, the feasibility of which from a single track vehicle has not been confirmed yet. To address this issue, our study presents obstacle detection tests in a real-world MAEB-sensitive crash scenario.