Abstract:SAR (VV and VH polarization) and optical data are widely used in image fusion to use the complimentary information of each other and to obtain the better-quality image (in terms of spatial and spectral features) for the improved classification results. This paper uses anisotropic diffusion with PCA for the fusion of SAR and optical data and patch-based SVM Classification with LBP (LBP-PSVM). Fusion results with VV polarization performed better than VH polarization using considered fusion method. For classification, the performance of LBP-PSVM using S1 (VV) with S2, S1 (VH) with S2 is compared with SVM classifier (without patch) and PSVM classifier (with patch), respectively. Classification results suggests that the LBP-PSVM classifier is more effective in comparison to SVM and PSVM classifiers for considered data.
Abstract:The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet. We see as time passes, significant changes come in the present era, which begins with Green Revolution. Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food. Earlier farmers use experts to determine the type of plant disease, which was expensive and time-consuming. In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf, and there are different modus-operandi for plant disease scent from leaf using Neural Networks (NN), Support Vector Machine (SVM), and others. In this paper, we improving the architecture of the Neural Networking by working on ten different types of training algorithms and the proper choice of neurons in the concealed layer. Our proposed approach gives 98.30% accuracy on general plant leaf disease and 100% accuracy on specific plant leaf disease based on Bayesian regularization, automation of cluster and without over-fitting on considered plant diseases over various other implemented methods.