Abstract:This investigation aims to study different adaptive fuzzy inference algorithms capable of real-time sequential learning and prediction of time-series data. A brief qualitative description of these algorithms namely meta-cognitive fuzzy inference system (McFIS), sequential adaptive fuzzy inference system (SAFIS) and evolving Takagi-Sugeno (ETS) model provide a comprehensive comparison of their working principle, especially their unique characteristics are discussed. These algorithms are then simulated with dataset collected at one of the academic buildings at Nanyang Technological University, Singapore. The performance are compared by means of the root mean squared error (RMSE) and non-destructive error index (NDEI) of the predicted output. Analysis shows that McFIS shows promising results either with lower RMSE and NDEI or with lower architectural complexity over ETS and SAFIS. Statistical Analysis also reveals the significance of the outcome of these algorithms.