Abstract:Speech bandwidth expansion is crucial for expanding the frequency range of low-bandwidth speech signals, thereby improving audio quality, clarity and perceptibility in digital applications. Its applications span telephony, compression, text-to-speech synthesis, and speech recognition. This paper presents a novel approach using a high-fidelity generative adversarial network, unlike cascaded systems, our system is trained end-to-end on paired narrowband and wideband speech signals. Our method integrates various bandwidth upsampling ratios into a single unified model specifically designed for speech bandwidth expansion applications. Our approach exhibits robust performance across various bandwidth expansion factors, including those not encountered during training, demonstrating zero-shot capability. To the best of our knowledge, this is the first work to showcase this capability. The experimental results demonstrate that our method outperforms previous end-to-end approaches, as well as interpolation and traditional techniques, showcasing its effectiveness in practical speech enhancement applications.
Abstract:Spelling correction is the task of identifying spelling mistakes, typos, and grammatical mistakes in a given text and correcting them according to their context and grammatical structure. This work introduces "AraSpell," a framework for Arabic spelling correction using different seq2seq model architectures such as Recurrent Neural Network (RNN) and Transformer with artificial data generation for error injection, trained on more than 6.9 Million Arabic sentences. Thorough experimental studies provide empirical evidence of the effectiveness of the proposed approach, which achieved 4.8% and 1.11% word error rate (WER) and character error rate (CER), respectively, in comparison with labeled data of 29.72% WER and 5.03% CER. Our approach achieved 2.9% CER and 10.65% WER in comparison with labeled data of 10.02% CER and 50.94% WER. Both of these results are obtained on a test set of 100K sentences.
Abstract:The rise of computational power has led to unprecedented performance gains for deep learning models. As more data becomes available and model architectures become more complex, the need for more computational power increases. On the other hand, since the introduction of Bitcoin as the first cryptocurrency and the establishment of the concept of blockchain as a distributed ledger, many variants and approaches have been proposed. However, many of them have one thing in common, which is the Proof of Work (PoW) consensus mechanism. PoW is mainly used to support the process of new block generation. While PoW has proven its robustness, its main drawback is that it requires a significant amount of processing power to maintain the security and integrity of the blockchain. This is due to applying brute force to solve a hashing puzzle. To utilize the computational power available in useful and meaningful work while keeping the blockchain secure, many techniques have been proposed, one of which is known as Proof of Deep Learning (PoDL). PoDL is a consensus mechanism that uses the process of training a deep learning model as proof of work to add new blocks to the blockchain. In this paper, we survey the various approaches for PoDL. We discuss the different types of PoDL algorithms, their advantages and disadvantages, and their potential applications. We also discuss the challenges of implementing PoDL and future research directions.
Abstract:Spoken keyword spotting (KWS) is the task of identifying a keyword in an audio stream and is widely used in smart devices at the edge in order to activate voice assistants and perform hands-free tasks. The task is daunting as there is a need, on the one hand, to achieve high accuracy while at the same time ensuring that such systems continue to run efficiently on low power and possibly limited computational capabilities devices. This work presents AraSpot for Arabic keyword spotting trained on 40 Arabic keywords, using different online data augmentation, and introducing ConformerGRU model architecture. Finally, we further improve the performance of the model by training a text-to-speech model for synthetic data generation. AraSpot achieved a State-of-the-Art SOTA 99.59% result outperforming previous approaches.