Abstract:Multi-objective optimisation of damper placement in dynamically symmetric adjacent buildings is considered with identical viscoelastic dampers used for vibration control. First, exhaustive search is used to describe the solution space in terms of various quantities of interest such as maximum top floor displacement, maximum floor acceleration, base shear, and interstorey drift. With the help of examples, it is pointed out that the Pareto fronts in these problems contain a very small number of solutions. The effectiveness of two commonly used multi-objective evolutionary algorithms, viz., NSGA-II and MOPSO, is evaluated for a specific example.
Abstract:Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design of water distribution systems is described. An earlier MOPSO algorithm is augmented with (a) local search, (b) a modified strategy for assigning the leader, and (c) a modified mutation scheme. For one of the benchmark problems described in the literature, the effect of each of the above features on the algorithm performance is demonstrated. The augmented MOPSO algorithm (called MOPSO+) is applied to five benchmark problems, and in each case, it finds non-dominated solutions not reported earlier. In addition, for the purpose of comparing Pareto fronts (sets of non-dominated solutions) obtained by different algorithms, a new criterion is suggested, and its usefulness is pointed out with an example. Finally, some suggestions regarding future research directions are made.
Abstract:It is shown that the use of an external archive, purely for storage purposes, can bring substantial benefits in multi-objective optimization. A new scheme for archive management for the above purpose is described. The new scheme is combined with the NSGA-II algorithm for solving two multi-objective optimization problems, and it is demonstrated that this combination gives significantly improved sets of Pareto-optimal solutions. The additional computational effort because of the external archive is found to be insignificant when the objective functions are expensive to evaluate.