Abstract:We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases.
Abstract:The paper presents a constructive fixpoint semantics for autoepistemic logic (AEL). This fixpoint characterizes a unique but possibly three-valued belief set of an autoepistemic theory. It may be three-valued in the sense that for a subclass of formulas F, the fixpoint may not specify whether F is believed or not. The paper presents a constructive 3-valued semantics for autoepistemic logic (AEL). We introduce a derivation operator and define the semantics as its least fixpoint. The semantics is 3-valued in the sense that, for some formulas, the least fixpoint does not specify whether they are believed or not. We show that complete fixpoints of the derivation operator correspond to Moore's stable expansions. In the case of modal representations of logic programs our least fixpoint semantics expresses well-founded semantics or 3-valued Fitting-Kunen semantics (depending on the embedding used). We show that, computationally, our semantics is simpler than the semantics proposed by Moore (assuming that the polynomial hierarchy does not collapse).