Abstract:Recommender systems (RS) help users navigate large sets of items in the search for "interesting" ones. One approach to RS is Collaborative Filtering (CF), which is based on the idea that similar users are interested in similar items. Most model-based approaches to CF seek to train a machine-learning/data-mining model based on sparse data; the model is then used to provide recommendations. While most of the proposed approaches are effective for small-size situations, the combinatorial nature of the problem makes it impractical for medium-to-large instances. In this work we present a novel approach to CF that works by training a Denoising Auto-Encoder (DAE) on corrupted baskets, i.e., baskets from which one or more items have been removed. The DAE is then forced to learn to reconstruct the original basket given its corrupted input. Due to recent advancements in optimization and other technologies for training neural-network models (such as DAE), the proposed method results in a scalable and practical approach to CF. The contribution of this work is twofold: (1) to identify missing items in observed baskets and, thus, directly providing a CF model; and, (2) to construct a generative model of baskets which may be used, for instance, in simulation analysis or as part of a more complex analytical method.
Abstract:Many retailers today employ inventory management systems based on Re-Order Point Policies, most of which rely on the assumption that all decreases in product inventory levels result from product sales. Unfortunately, it usually happens that small but random quantities of the product get lost, stolen or broken without record as time passes, e.g., as a consequence of shoplifting. This is usual for retailers handling large varieties of inexpensive products, e.g., grocery stores. In turn, over time these discrepancies lead to stock freezing problems, i.e., situations where the system believes the stock is above the re-order point but the actual stock is at zero, and so no replenishments or sales occur. Motivated by these issues, we model the interaction between sales, losses, replenishments and inventory levels as a Dynamic Bayesian Network (DBN), where the inventory levels are unobserved (i.e., hidden) variables we wish to estimate. We present an Expectation-Maximization (EM) algorithm to estimate the parameters of the sale and loss distributions, which relies on solving a one-dimensional dynamic program for the E-step and on solving two separate one-dimensional nonlinear programs for the M-step.