Abstract:Massive multiple-input multiple-output (mMIMO) technology is a way to increase the spectral efficiency of machine-type communications (MTC). To exploit the benefits from large antenna arrays, accurate channel estimation through pilot signals is needed. Massive MTC systems cannot avoid pilot reuse due to the enormous numbers of connected devices. We propose a pilot reuse algorithm based on channel charting (CC) to mitigate pilot contamination in a multi-sector single-cell massive MTC system having spatially correlated channels. We show that after creating an interference map via CC, a simple strategy to allocate the pilot sequences can be implemented. The simulation results show that the CC-based pilot reuse strategy improves channel estimation accuracy, which subsequently improves the symbol detection performance and increases the spectral efficiency compared to other existing schemes. Moreover, the performance of the CC pilot assignment method approaches that of exhaustive search pilot assignment for small network setups.
Abstract:As a key enabler for massive machine-type communications (mMTC), spatial multiplexing relies on massive multiple-input multiple-output (mMIMO) technology to serve the massive number of user equipments (UEs). To exploit spatial multiplexing, accurate channel estimation through pilot signals is needed. In mMTC systems, it is impractical to allocate a unique orthogonal pilot sequence to each UE as it would require too long pilot sequences, degrading the spectral efficiency. This work addresses the design of channel features from correlated fading channels to assist the pilot assignment in multi-sector mMTC systems under pilot reuse of orthogonal sequences. In order to reduce pilot collisions and to enable pilot reuse, we propose to extract features from the channel covariance matrices that reflect the level of orthogonality between the UEs channels. Two features are investigated: covariance matrix distance (CMD) feature and CMD-aided channel charting (CC) feature. In terms of symbol error rate and achievable rate, the CC-based feature shows superior performance than the CMD-based feature and baseline pilot assignment algorithms.