Abstract:This paper presents entropy maps, an approach to describing and visualising uncertainty among alternative potential movement intentions in pedestrian simulation models. In particular, entropy maps show the instantaneous level of randomness in decisions of a pedestrian agent situated in a specific point of the simulated environment with an heatmap approach. Experimental results highlighting the relevance of this tool supporting modelers are provided and discussed.
Abstract:Current metropolises largely depend on a functioning transport infrastructure and the increasing demand can only be satisfied by a well organized mass transit. One example for a crucial mass transit system is New York City's Staten Island Ferry, connecting the two boroughs of Staten Island and Manhattan with a regular passenger service. Today's demand already exceeds 2500 passengers for a single cycle during peek hours, and future projections suggest that it will further increase. One way to appraise how the system will cope with future demand is by simulation. This contribution proposes an integrated simulation approach to evaluate the system performance with respect to future demand. The simulation relies on a multiscale modeling approach where the terminal buildings are simulated by a microscopic and quantitatively valid cellular automata (CA) and the journeys of the ferries themselves are modeled by a mesoscopic queue simulation approach. Based on the simulation results recommendations with respect to the future demand are given.