Abstract:Tree ensemble methods represent a popular machine learning model, known for their effectiveness in supervised classification and regression tasks. Their performance derives from aggregating predictions of multiple decision trees, which are renowned for their interpretability properties. However, tree ensemble methods do not reliably exhibit interpretable output. Our work aims to extract an optimized list of rules from a trained tree ensemble, providing the user with a condensed, interpretable model that retains most of the predictive power of the full model. Our approach consists of solving a clean and neat set partitioning problem formulated through Integer Programming. The proposed method works with either tabular or time series data, for both classification and regression tasks, and does not require parameter tuning under the most common setting. Through rigorous computational experiments, we offer statistically significant evidence that our method is competitive with other rule extraction methods and effectively handles time series.