Abstract:The takeaway recommendation system is designed to recommend users' future takeaway purchases based on their historical purchase behaviors, thereby improving user satisfaction and increasing merchant sales. Existing methods focus on incorporating auxiliary information or leveraging knowledge graphs to alleviate the sparsity issue of user purchase sequence data. However, two main challenges limit the performance of these approaches: (1) how to capture dynamic user preferences on complex geospatial information and (2) how to efficiently integrate spatial-temporal knowledge from graphs and sequence data with low calculation costs. In this paper, we propose a novel spatial-temporal knowledge distillation for takeaway recommendation model (STKDRec) based on the two-stage training process. Specifically, during the first pre-training stage, a spatial-temporal knowledge graph (STKG) encoder is pre-trained to extract the high-order spatial-temporal and collaborative associations within the STKG. During the second STKD stage, a spatial-temporal Transformer is employed to comprehensively model dynamic user preferences on various types of fine-grained geospatial information from a sequence perspective. Furthermore, the STKD strategy is introduced to adaptively fuse the rich spatial-temporal knowledge from the pre-trained STKG encoder and the spatial-temporal transformer while reducing the cost of model training. Extensive experiments on three real-world datasets show that our STKDRec significantly outperforms the state-of-the-art baselines. Our code is available at:https://github.com/Zhaoshuyuan0246/STKDRec.