Abstract:Recent methods in modeling spatial extreme events have focused on utilizing parametric max-stable processes and their underlying dependence structure. In this work, we provide a unified approach for analyzing spatial extremes with little available data by estimating the distribution of model parameters or the spatial dependence directly. By employing recent developments in generative neural networks we predict a full sample-based distribution, allowing for direct assessment of uncertainty regarding model parameters or other parameter dependent functionals. We validate our method by fitting several simulated max-stable processes, showing a high accuracy of the approach, regarding parameter estimation, as well as uncertainty quantification. Additional robustness checks highlight the generalization and extrapolation capabilities of the model, while an application to precipitation extremes across Western Germany demonstrates the usability of our approach in real-world scenarios.