Abstract:Monitoring heterogeneous infrastructures and applications is essential to cope with user requirements properly, but it still lacks enhancements. The well-known state-of-the-art methods and tools do not support seamless monitoring of bare-metal, low-cost infrastructures, neither hosted nor virtualized services with fine-grained details. This work proposes VIrtualized NEtwork VIsion architecture (VINEVI), an intelligent method for seamless monitoring heterogeneous infrastructures and applications. The VINEVI architecture advances state of the art with a node-embedded traffic classification agent placing physical and virtualized infrastructures enabling real-time traffic classification. VINEVI combines this real-time traffic classification with well-known tools such as Prometheus and Victoria Metrics to monitor the entire stack from the hardware to the virtualized applications. Experimental results showcased that VINEVI architecture allowed seamless heterogeneous infrastructure monitoring with a higher level of detail beyond literature. Also, our node-embedded real-time Internet traffic classifier evolved with flexibility the methods with monitoring heterogeneous infrastructures seamlessly.
Abstract:Artificial Intelligence (AI) is pivotal in advancing mobile network systems by facilitating smart capabilities and automation. The transition from 4G to 5G has substantial implications for AI in consolidating a network predominantly geared towards business verticals. In this context, 3GPP has specified and introduced the Network Data Analytics Function (NWDAF) entity at the network's core to provide insights based on AI algorithms to benefit network orchestration. This paper proposes a framework for evolving NWDAF that presents the interfaces necessary to further empower the core network with AI capabilities B5G and 6G. In addition, we identify a set of research directions for realizing a distributed e-NWDAF.
Abstract:The diagnosis of diseases in food crops based on machine learning seemed satisfactory and suitable for use on a large scale. The Convolutional Neural Networks (CNNs) perform accurately in the disease prediction considering the image capture of the crop leaf, being extensively enhanced in the literature. These machine learning techniques fall short in data privacy, as they require sharing the data in the training process with a central server, disregarding competitive or regulatory concerns. Thus, Federated Learning (FL) aims to support distributed training to address recognized gaps in centralized training. As far as we know, this paper inaugurates the use and evaluation of FL applied in maize leaf diseases. We evaluated the performance of five CNNs trained under the distributed paradigm and measured their training time compared to the classification performance. In addition, we consider the suitability of distributed training considering the volume of network traffic and the number of parameters of each CNN. Our results indicate that FL potentially enhances data privacy in heterogeneous domains.