Abstract:The implementation of energy communities represents a cross-disciplinary phenomenon that has the potential to support the energy transition while fostering citizens' participation throughout the energy system and their exploitation of renewables. An important role is played by online information sources in engaging people in this process and increasing their awareness of associated benefits. In this view, this work analyses online news data on energy communities to understand people's awareness and the media importance of this topic. We use the Semantic Brand Score (SBS) indicator as an innovative measure of semantic importance, combining social network analysis and text mining methods. Results show different importance trends for energy communities and other energy and society-related topics, also allowing the identification of their connections. Our approach gives evidence to information gaps and possible actions that could be taken to promote a low-carbon energy transition.
Abstract:Today brand managers and marketing specialists can leverage huge amount of data to reveal patterns and trends in consumer perceptions, monitoring positive or negative associations of brands with respect to desired topics. In this study, we apply the Semantic Brand Score (SBS) indicator to assess brand importance in the fashion industry. To this purpose, we measure and visualize text data using the SBS Business Intelligence App (SBS BI), which relies on methods and tools of text mining and social network analysis. We collected and analyzed about 206,000 tweets that mentioned the fashion brands Fendi, Gucci and Prada, during the period from March 5 to March 12, 2021. From the analysis of the three SBS dimensions - prevalence, diversity and connectivity - we found that Gucci dominated the discourse, with high values of SBS. We use this case study as an example to present a new system for evaluating brand importance and image, through the analysis of (big) textual data.