Abstract:The Vehicle Routing Problem is about optimizing the routes of vehicles to meet the needs of customers at specific locations. The route graph consists of depots on several levels and customer positions. Several optimization methods have been developed over the years, most of which are based on some type of classic heuristic: genetic algorithm, simulated annealing, tabu search, ant colony optimization, firefly algorithm. Recent developments in machine learning provide a new toolset, the rich family of neural networks, for tackling complex problems. The main area of application of neural networks is the area of classification and regression. Route optimization can be viewed as a new challenge for neural networks. The article first presents an analysis of the applicability of neural network tools, then a novel graphical neural network model is presented in detail. The efficiency analysis based on test experiments shows the applicability of the proposed NN architecture.
Abstract:Process-mining techniques have emerged as powerful tools for analyzing event data to gain insights into business processes. In this paper, we present a comprehensive analysis of road traffic fine management processes using the pm4py library in Python. We start by importing an event log dataset and explore its characteristics, including the distribution of activities and process variants. Through filtering and statistical analysis, we uncover key patterns and variations in the process executions. Subsequently, we apply various process-mining algorithms, including the Alpha Miner, Inductive Miner, and Heuristic Miner, to discover process models from the event log data. We visualize the discovered models to understand the workflow structures and dependencies within the process. Additionally, we discuss the strengths and limitations of each mining approach in capturing the underlying process dynamics. Our findings shed light on the efficiency and effectiveness of road traffic fine management processes, providing valuable insights for process optimization and decision-making. This study demonstrates the utility of pm4py in facilitating process mining tasks and its potential for analyzing real-world business processes.
Abstract:One of the hot topics in machine learning is the field of GNN. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. This paper represents a survey, providing a comprehensive overview of Graph Neural Networks (GNNs). We discuss the applications of graph neural networks across various domains. Finally, we present an advanced field in GNNs: graph generation.