Abstract:Identification and verification of molecular properties such as side effects is one of the most important and time-consuming steps in the process of molecule synthesis. For example, failure to identify side effects before submission to regulatory groups can cost millions of dollars and months of additional research to the companies. Failure to identify side effects during the regulatory review can also cost lives. The complexity and expense of this task have made it a candidate for a machine learning-based solution. Prior approaches rely on complex model designs and excessive parameter counts for side effect predictions. We believe reliance on complex models only shifts the difficulty away from chemists rather than alleviating the issue. Implementing large models is also expensive without prior access to high-performance computers. We propose a heuristic approach that allows for the utilization of simple neural networks, specifically the recurrent neural network, with a 98+% reduction in the number of required parameters compared to available large language models while still obtaining near identical results as top-performing models.
Abstract:In this paper, we propose shot optimization method for QML models at the expense of minimal impact on model performance. We use classification task as a test case for MNIST and FMNIST datasets using a hybrid quantum-classical QML model. First, we sweep the number of shots for short and full versions of the dataset. We observe that training the full version provides 5-6% higher testing accuracy than short version of dataset with up to 10X higher number of shots for training. Therefore, one can reduce the dataset size to accelerate the training time. Next, we propose adaptive shot allocation on short version dataset to optimize the number of shots over training epochs and evaluate the impact on classification accuracy. We use a (a) linear function where the number of shots reduce linearly with epochs, and (b) step function where the number of shots reduce in step with epochs. We note around 0.01 increase in loss and around 4% (1%) reduction in testing accuracy for reduction in shots by up to 100X (10X) for linear (step) shot function compared to conventional constant shot function for MNIST dataset, and 0.05 increase in loss and around 5-7% (5-7%) reduction in testing accuracy with similar reduction in shots using linear (step) shot function on FMNIST dataset. For comparison, we also use the proposed shot optimization methods to perform ground state energy estimation of different molecules and observe that step function gives the best and most stable ground state energy prediction at 1000X less number of shots.