Abstract:The popularity of Software Defined Networks (SDNs) has grown in recent years, mainly because of their ability to simplify network management and improve network flexibility. However, this also makes them vulnerable to various types of cyber attacks. SDNs work on a centralized control plane which makes them more prone to network attacks. Research has demonstrated that deep learning (DL) methods can be successful in identifying intrusions in conventional networks, but their application in SDNs is still an open research area. In this research, we propose the use of DL techniques for intrusion detection in SDNs. We measure the effectiveness of our method by experimentation on a dataset of network traffic and comparing it to existing techniques. Our results show that the DL-based approach outperforms traditional methods in terms of detection accuracy and computational efficiency. The deep learning architecture that has been used in this research is a Long Short Term Memory Network and Self-Attention based architecture i.e. LSTM-Attn which achieves an Fl-score of 0.9721. Furthermore, this technique can be trained to detect new attack patterns and improve the overall security of SDNs.
Abstract:The use of intelligent automation is growing significantly in the automotive industry, as it assists drivers and fleet management companies, thus increasing their productivity. Dash cams are now been used for this purpose which enables the instant identification and understanding of multiple objects and occurrences in the surroundings. In this paper, we propose a novel approach for object detection in dashcams using transformers. Our system is based on the state-of-the-art DEtection TRansformer (DETR), which has demonstrated strong performance in a variety of conditions, including different weather and illumination scenarios. The use of transformers allows for the consideration of contextual information in decisionmaking, improving the accuracy of object detection. To validate our approach, we have trained our DETR model on a dataset that represents real-world conditions. Our results show that the use of intelligent automation through transformers can significantly enhance the capabilities of dashcam systems. The model achieves an mAP of 0.95 on detection.