Abstract:Many countries such as Saudi Arabia, Morocco and Tunisia are among the top exporters and consumers of palm date fruits. Date fruit production plays a major role in the economies of the date fruit exporting countries. Date fruits are susceptible to disease just like any fruit and early detection and intervention can end up saving the produce. However, with the vast farming lands, it is nearly impossible for farmers to observe date trees on a frequent basis for early disease detection. In addition, even with human observation the process is prone to human error and increases the date fruit cost. With the recent advances in computer vision, machine learning, drone technology, and other technologies; an integrated solution can be proposed for the automatic detection of date fruit disease. In this paper, a hybrid features based method with the standard classifiers is proposed based on the extraction of L*a*b color features, statistical features, and Discrete Wavelet Transform (DWT) texture features for the early detection and classification of date fruit disease. A dataset was developed for this work consisting of 871 images divided into the following classes; Healthy date, Initial stage of disease, Malnourished date, and Parasite infected. The extracted features were input to common classifiers such as the Random Forest (RF), Multilayer Perceptron (MLP), Na\"ive Bayes (NB), and Fuzzy Decision Trees (FDT). The highest average accuracy was achieved when combining the L*a*b, Statistical, and DWT Features.
Abstract:As the population grows and more land is being used for urbanization, ecosystems are disrupted by our roads and cars. This expansion of infrastructure cuts through wildlife territories, leading to many instances of Wildlife-Vehicle Collision (WVC). These instances of WVC are a global issue that is having a global socio-economic impact, resulting in billions of dollars in property damage and, at times, fatalities for vehicle occupants. In Saudi Arabia, this issue is similar, with instances of Camel-Vehicle Collision (CVC) being particularly deadly due to the large size of camels, which results in a 25% fatality rate [1]. The focus of this work is to test different object detection models on the task of detecting camels on the road. The Deep Learning (DL) object detection models used in the experiments are: Center Net, Efficient Det, Faster R-CNN, SSD, and YOLOv8. Results of the experiments show that YOLOv8 performed the best in terms of accuracy and was the most efficient in training. In the future, the plan is to expand on this work by developing a system to make countryside roads safer.
Abstract:As the population grows and more land is being used for urbanization, ecosystems are disrupted by our roads and cars. This expansion of infrastructure cuts through wildlife territories, leading to many instances of Wildlife-Vehicle Collision (WVC). These instances of WVC are a global issue that is having a global socio-economic impact, resulting in billions of dollars in property damage and, at times, fatalities for vehicle occupants. In Saudi Arabia, this issue is similar, with instances of Camel-Vehicle Collision (CVC) being particularly deadly due to the large size of camels, which results in a 25% fatality rate [4]. The focus of this work is to test different object detection models on the task of detecting camels on the road. The Deep Learning (DL) object detection models used in the experiments are: CenterNet, EfficientDet, Faster R-CNN, and SSD. Results of the experiments show that CenterNet performed the best in terms of accuracy and was the most efficient in training. In the future, the plan is to expand on this work by developing a system to make countryside roads safer.