Abstract:Incorporating cloud technology with Internet of Medical Things for ubiquitous healthcare has seen many successful applications in the last decade with the advent of machine learning and deep learning techniques. One of these applications, namely voice-based pathology, has yet to receive notable attention from academia and industry. Applying voice analysis to early detection of fatal diseases holds much promise to improve health outcomes and quality of life of patients. In this paper, we propose a novel application of acoustic machine learning based triaging into commoditised conversational virtual assistant systems to pre-screen for onset of diabetes. Specifically, we developed a triaging system which extracts acoustic features from the voices of n=24 older adults when they converse with a virtual assistant and predict the incidence of Diabetes Mellitus (Type 2) or not. Our triaging system achieved hit-rates of 70% and 60% for male and female older adult subjects, respectively. Our proposed triaging uses 7 non-identifiable voice-based features and can operate within resource-constrained embedded systems running voice-based virtual assistants. This application demonstrates the feasibility of applying voice-based pathology analysis to improve health outcomes of older adults within the home environment by early detection of life-changing chronic conditions like diabetes.
Abstract:Gait has been used in clinical and healthcare applications to assess the physical and cognitive health of older adults. Acoustic based gait detection is a promising approach to collect gait data of older adults passively and non-intrusively. However, there has been limited work in developing acoustic based gait detectors that can operate in noisy polyphonic acoustic scenes of homes and care homes. We attribute this to the lack of good quality gait datasets from the real-world to train a gait detector on. In this paper, we put forward a novel machine learning based filter which can triage gait audio samples suitable for training machine learning models for gait detection. The filter achieves this by eliminating noisy samples at an f(1) score of 0.85 and prioritising gait samples with distinct spectral features and minimal noise. To demonstrate the effectiveness of the filter, we train and evaluate a deep learning model on gait datasets collected from older adults with and without applying the filter. The model registers an increase of 25 points in its f(1) score on unseen real-word gait data when trained with the filtered gait samples. The proposed filter will help automate the task of manual annotation of gait samples for training acoustic based gait detection models for older adults in indoor environments.