Abstract:Traditional automated crash analysis systems heavily rely on static statistical models and historical data, requiring significant manual interpretation and lacking real-time predictive capabilities. This research presents an innovative approach to traffic safety analysis through the integration of ensemble learning methods and multi-modal data fusion for real-time crash risk assessment and prediction. Our primary contribution lies in developing a hierarchical severity classification system that combines spatial-temporal crash patterns with environmental conditions, achieving significant improvements over traditional statistical approaches. The system demonstrates a Mean Average Precision (mAP) of 0.893, representing a 15% improvement over current state-of-the-art methods (baseline mAP: 0.776). We introduce a novel feature engineering technique that integrates crash location data with incident reports and weather conditions, achieving 92.4% accuracy in risk prediction and 89.7% precision in hotspot identification. Through extensive validation using 500,000 initial crash records filtered to 59,496 high-quality samples, our solution shows marked improvements in both prediction accuracy and computational efficiency. Key innovations include a robust data cleaning pipeline, adaptive feature generation, and a scalable real-time prediction system capable of handling peak loads of 1,000 concurrent requests while maintaining sub-100ms response times.
Abstract:While Natural Language Inference (NLI) models have achieved high performances on benchmark datasets, there are still concerns whether they truly capture the intended task, or largely exploit dataset artifacts. Through detailed analysis of the Stanford Natural Language Inference (SNLI) dataset, we have uncovered complex patterns of various types of artifacts and their interactions, leading to the development of our novel structural debiasing approach. Our fine-grained analysis of 9,782 validation examples reveals four major categories of artifacts: length-based patterns, lexical overlap, subset relationships, and negation patterns. Our multi-head debiasing architecture achieves substantial improvements across all bias categories: length bias accuracy improved from 86.03% to 90.06%, overlap bias from 91.88% to 93.13%, subset bias from 95.43% to 96.49%, and negation bias from 88.69% to 94.64%. Overall, our approach reduces the error rate from 14.19% to 10.42% while maintaining high performance on unbiased examples. Analysis of 1,026 error cases shows significant improvement in handling neutral relationships, traditionally one of the most challenging areas for NLI systems.
Abstract:Traditional automated toll collection systems depend on complex hardware configurations, that require huge investments in installation and maintenance. This research paper presents an innovative approach to revolutionize automated toll collection by using a single camera per plaza with the YOLOv11 computer vision architecture combined with an ensemble OCR technique. Our system has achieved a Mean Average Precision (mAP) of 0.895 over a wide range of conditions, demonstrating 98.5% accuracy in license plate recognition, 94.2% accuracy in axle detection, and 99.7% OCR confidence scoring. The architecture incorporates intelligent vehicle tracking across IOU regions, automatic axle counting by way of spatial wheel detection patterns, and real-time monitoring through an extended dashboard interface. Extensive training using 2,500 images under various environmental conditions, our solution shows improved performance while drastically reducing hardware resources compared to conventional systems. This research contributes toward intelligent transportation systems by introducing a scalable, precision-centric solution that improves operational efficiency and user experience in modern toll collections.