Abstract:Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models deployed in real-world applications. Conventional methods for OOD detection that rely on single-modal information, often struggle to capture the rich variety of OOD instances. The primary difficulty in OOD detection arises when an input image has numerous similarities to a particular class in the in-distribution (ID) dataset, e.g., wolf to dog, causing the model to misclassify it. Nevertheless, it may be easy to distinguish these classes in the semantic domain. To this end, in this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model as an auxiliary modality to facilitate detection. Moreover, a contrastive loss based on OOD peer classes is devised to learn compact representations of ID classes and improve the clarity of boundaries between different classes. The extensive experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.