Abstract:Understanding animal behaviour is central to predicting, understanding, and mitigating impacts of natural and anthropogenic changes on animal populations and ecosystems. However, the challenges of acquiring and processing long-term, ecologically relevant data in wild settings have constrained the scope of behavioural research. The increasing availability of Unmanned Aerial Vehicles (UAVs), coupled with advances in machine learning, has opened new opportunities for wildlife monitoring using aerial tracking. However, limited availability of datasets with wild animals in natural habitats has hindered progress in automated computer vision solutions for long-term animal tracking. Here we introduce BuckTales, the first large-scale UAV dataset designed to solve multi-object tracking (MOT) and re-identification (Re-ID) problem in wild animals, specifically the mating behaviour (or lekking) of blackbuck antelopes. Collected in collaboration with biologists, the MOT dataset includes over 1.2 million annotations including 680 tracks across 12 high-resolution (5.4K) videos, each averaging 66 seconds and featuring 30 to 130 individuals. The Re-ID dataset includes 730 individuals captured with two UAVs simultaneously. The dataset is designed to drive scalable, long-term animal behaviour tracking using multiple camera sensors. By providing baseline performance with two detectors, and benchmarking several state-of-the-art tracking methods, our dataset reflects the real-world challenges of tracking wild animals in socially and ecologically relevant contexts. In making these data widely available, we hope to catalyze progress in MOT and Re-ID for wild animals, fostering insights into animal behaviour, conservation efforts, and ecosystem dynamics through automated, long-term monitoring.
Abstract:Recent advances in machine learning and computer vision are revolutionizing the field of animal behavior by enabling researchers to track the poses and locations of freely moving animals without any marker attachment. However, large datasets of annotated images of animals for markerless pose tracking, especially high-resolution images taken from multiple angles with accurate 3D annotations, are still scant. Here, we propose a method that uses a motion capture (mo-cap) system to obtain a large amount of annotated data on animal movement and posture (2D and 3D) in a semi-automatic manner. Our method is novel in that it extracts the 3D positions of morphological keypoints (e.g eyes, beak, tail) in reference to the positions of markers attached to the animals. Using this method, we obtained, and offer here, a new dataset - 3D-POP with approximately 300k annotated frames (4 million instances) in the form of videos having groups of one to ten freely moving birds from 4 different camera views in a 3.6m x 4.2m area. 3D-POP is the first dataset of flocking birds with accurate keypoint annotations in 2D and 3D along with bounding box and individual identities and will facilitate the development of solutions for problems of 2D to 3D markerless pose, trajectory tracking, and identification in birds.