Abstract:Epilepsy is the most common, chronic, neurological disease worldwide and is typically accompanied by reoccurring seizures. Neuro implants can be used for effective treatment by suppressing an upcoming seizure upon detection. Due to the restricted size and limited battery lifetime of those medical devices, the employed approach also needs to be limited in size and have low energy requirements. We present an energy-efficient seizure detection approach involving a TC-ResNet and time-series analysis which is suitable for low-power edge devices. The presented approach allows for accurate seizure detection without preceding feature extraction while considering the stringent hardware requirements of neural implants. The approach is validated using the CHB-MIT Scalp EEG Database with a 32-bit floating point model and a hardware suitable 4-bit fixed point model. The presented method achieves an accuracy of 95.28%, a sensitivity of 92.34% and an AUC score of 0.9384 on this dataset with 4-bit fixed point representation. Furthermore, the power consumption of the model is measured with the low-power AI accelerator UltraTrail, which only requires 495 nW on average. Due to this low-power consumption this classification approach is suitable for real-time seizure detection on low-power wearable devices such as neural implants.
Abstract:This paper presents a method to efficiently classify the gastroenterologic section of images derived from Video Capsule Endoscopy (VCE) studies by exploring the combination of a Convolutional Neural Network (CNN) for classification with the time-series analysis properties of a Hidden Markov Model (HMM). It is demonstrated that successive time-series analysis identifies and corrects errors in the CNN output. Our approach achieves an accuracy of $98.04\%$ on the Rhode Island (RI) Gastroenterology dataset. This allows for precise localization within the gastrointestinal (GI) tract while requiring only approximately 1M parameters and thus, provides a method suitable for low power devices