Abstract:Signed link prediction in graphs is an important problem that has applications in diverse domains. It is a binary classification problem that predicts whether an edge between a pair of nodes is positive or negative. Existing approaches for link prediction in unsigned networks cannot be directly applied for signed link prediction due to their inherent differences. Further, additional structural constraints, like, the structural balance property of the signed networks must be considered for signed link prediction. Recent signed link prediction approaches generate node representations using either generative models or discriminative models. Inspired by the recent success of Generative Adversarial Network (GAN) based models which comprises of a discriminator and generator in several applications, we propose a Generative Adversarial Network (GAN) based model for signed networks, SigGAN. It considers the requirements of signed networks, such as, integration of information from negative edges, high imbalance in number of positive and negative edges and structural balance theory. Comparing the performance with state of the art techniques on several real-world datasets validates the effectiveness of SigGAN.
Abstract:Predicting the popularity of news article is a challenging task. Existing literature mostly focused on article contents and polarity to predict popularity. However, existing research has not considered the users' preference towards a particular article. Understanding users' preference is an important aspect for predicting the popularity of news articles. Hence, we consider the social media data, from the Twitter platform, to address this research gap. In our proposed model, we have considered the users' involvement as well as the users' reaction towards an article to predict the popularity of the article. In short, we are predicting tomorrow's headline by probing today's Twitter discussion. We have considered 300 political news article from the New York Post, and our proposed approach has outperformed other baseline models.