Abstract:Rotating machinery is essential to modern life, from power generation to transportation and a host of other industrial applications. Since such equipment generally operates under challenging working conditions, which can lead to untimely failures, accurate remaining useful life (RUL) prediction is essential for maintenance planning and to prevent catastrophic failures. In this work, we address current challenges in data-driven RUL prediction for rotating machinery. The challenges revolve around the accuracy and uncertainty quantification of the prediction, and the non-stationarity of the system degradation and RUL estimation given sensor data. We devise a novel architecture and RUL prediction model with uncertainty quantification, termed VisPro, which integrates time-frequency analysis, deep learning image recognition, and nonstationary Gaussian process regression. We analyze and benchmark the results obtained with our model against those of other advanced data-driven RUL prediction models for rotating machinery using the PHM12 bearing vibration dataset. The computational experiments show that (1) the VisPro predictions are highly accurate and provide significant improvements over existing prediction models (three times more accurate than the second-best model), and (2) the RUL uncertainty bounds are valid and informative. We identify and discuss the architectural and modeling choices made that explain this excellent predictive performance of VisPro.
Abstract:Remaining useful life (RUL) refers to the expected remaining lifespan of a component or system. Accurate RUL prediction is critical for prognostic and health management and for maintenance planning. In this work, we address three prevalent challenges in data-driven RUL prediction, namely the handling of high dimensional input features, the robustness to noise in sensor data and prognostic datasets, and the capturing of the time-dependency between system degradation and RUL prediction. We devise a highly accurate RUL prediction model with uncertainty quantification, which integrates and leverages the advantages of deep learning and nonstationary Gaussian process regression (DL-NSGPR). We examine and benchmark our model against other advanced data-driven RUL prediction models using the turbofan engine dataset from the NASA prognostic repository. Our computational experiments show that the DL-NSGPR predictions are highly accurate with root mean square error 1.7 to 6.2 times smaller than those of competing RUL models. Furthermore, the results demonstrate that RUL uncertainty bounds with the proposed DL-NSGPR are both valid and significantly tighter than other stochastic RUL prediction models. We unpack and discuss the reasons for this excellent performance of the DL-NSGPR.
Abstract:Machine learning (ML) pervades an increasing number of academic disciplines and industries. Its impact is profound, and several fields have been fundamentally altered by it, autonomy and computer vision for example; reliability engineering and safety will undoubtedly follow suit. There is already a large but fragmented literature on ML for reliability and safety applications, and it can be overwhelming to navigate and integrate into a coherent whole. In this work, we facilitate this task by providing a synthesis of, and a roadmap to this ever-expanding analytical landscape and highlighting its major landmarks and pathways. We first provide an overview of the different ML categories and sub-categories or tasks, and we note several of the corresponding models and algorithms. We then look back and review the use of ML in reliability and safety applications. We examine several publications in each category/sub-category, and we include a short discussion on the use of Deep Learning to highlight its growing popularity and distinctive advantages. Finally, we look ahead and outline several promising future opportunities for leveraging ML in service of advancing reliability and safety considerations. Overall, we argue that ML is capable of providing novel insights and opportunities to solve important challenges in reliability and safety applications. It is also capable of teasing out more accurate insights from accident datasets than with traditional analysis tools, and this in turn can lead to better informed decision-making and more effective accident prevention.