Abstract:As the global food security landscape continues to evolve, the need for accurate and reliable crop disease diagnosis has never been more pressing. To address global food security concerns, we extend the widely used PlantVillage dataset with additional apple leaf disease classes, enhancing diversity and complexity. Experimental evaluations on both original and extended datasets reveal that existing models struggle with the new additions, highlighting the need for more robust and generalizable computer vision models. Test F1 scores of 99.63% and 97.87% were obtained on the original and extended datasets, respectively. Our study provides a more challenging and diverse benchmark, paving the way for the development of accurate and reliable models for identifying apple leaf diseases under varying imaging conditions. The expanded dataset is available at https://www.kaggle.com/datasets/akinyemijoseph/apple-leaf-disease-dataset-6-classes-v2 enabling future research to build upon our findings.
Abstract:The task of recognizing the age-separated faces of an individual, Age-Invariant Face Recognition (AIFR), has received considerable research efforts in Europe, America, and Asia, compared to Africa. Thus, AIFR research efforts have often under-represented/misrepresented the African ethnicity with non-indigenous Africans. This work developed an AIFR system for indigenous African faces to reduce the misrepresentation of African ethnicity in facial image analysis research. We adopted a pre-trained deep learning model (VGGFace) for AIFR on a dataset of 5,000 indigenous African faces (FAGE\_v2) collected for this study. FAGE\_v2 was curated via Internet image searches of 500 individuals evenly distributed across 10 African countries. VGGFace was trained on FAGE\_v2 to obtain the best accuracy of 81.80\%. We also performed experiments on an African-American subset of the CACD dataset and obtained the best accuracy of 91.5\%. The results show a significant difference in the recognition accuracies of indigenous versus non-indigenous Africans.