Abstract:The success of social media platforms has facilitated the emergence of various forms of online abuse within digital communities. This abuse manifests in multiple ways, including hate speech, cyberbullying, emotional abuse, grooming, and sexting. In this paper, we present a comprehensive analysis of the different forms of abuse prevalent in social media, with a particular focus on how emerging technologies, such as Language Models (LMs) and Large Language Models (LLMs), are reshaping both the detection and generation of abusive content within these networks. We delve into the mechanisms through which social media abuse is perpetuated, exploring the psychological and social impact. Additionally, we examine the dual role of advanced language models-highlighting their potential to enhance automated detection systems for abusive behavior while also acknowledging their capacity to generate harmful content. This paper aims to contribute to the ongoing discourse on online safety and ethics, offering insights into the evolving landscape of cyberabuse and the technological innovations that both mitigate and exacerbate it.
Abstract:This comprehensive survey delves into the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences over the past four years, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging large language models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.
Abstract:The importance of social media in our daily lives has unfortunately led to an increase in the spread of misinformation, political messages and malicious links. One of the most popular ways of carrying out those activities is using automated accounts, also known as bots, which makes the detection of such accounts a necessity. This paper addresses that problem by investigating features based on the user account profile and its content, aiming to understand the relevance of each feature as a basis for improving future bot detectors. Through an exhaustive process of research, inference and feature selection, we are able to surpass the state of the art on several metrics using classical machine learning algorithms and identify the types of features that are most important in detecting automated accounts.