Abstract:Perceptual hashing algorithms (PHAs) are utilized extensively for identifying illegal online content. Given their crucial role in sensitive applications, understanding their security strengths and weaknesses is critical. This paper compares three major PHAs deployed widely in practice: PhotoDNA, PDQ, and NeuralHash, and assesses their robustness against three typical attacks: normal image editing attacks, malicious adversarial attacks, and hash inversion attacks. Contrary to prevailing studies, this paper reveals that these PHAs exhibit resilience to black-box adversarial attacks when realistic constraints regarding the distortion and query budget are applied, attributed to the unique property of random hash variations. Moreover, this paper illustrates that original images can be reconstructed from the hash bits, raising significant privacy concerns. By comprehensively exposing their security vulnerabilities, this paper contributes to the ongoing efforts aimed at enhancing the security of PHAs for effective deployment.