Abstract:Existing automated essay scoring (AES) has solely relied on essay text without using explanatory rationales for the scores, thereby forgoing an opportunity to capture the specific aspects evaluated by rubric indicators in a fine-grained manner. This paper introduces Rationale-based Multiple Trait Scoring (RMTS), a novel approach for multi-trait essay scoring that integrates prompt-engineering-based large language models (LLMs) with a fine-tuning-based essay scoring model using a smaller large language model (S-LLM). RMTS uses an LLM-based trait-wise rationale generation system where a separate LLM agent generates trait-specific rationales based on rubric guidelines, which the scoring model uses to accurately predict multi-trait scores. Extensive experiments on benchmark datasets, including ASAP, ASAP++, and Feedback Prize, show that RMTS significantly outperforms state-of-the-art models and vanilla S-LLMs in trait-specific scoring. By assisting quantitative assessment with fine-grained qualitative rationales, RMTS enhances the trait-wise reliability, providing partial explanations about essays.
Abstract:Knowledge Tracing (KT) is vital in educational data mining, enabling personalized learning by tracking learners' knowledge states and forecasting their academic outcomes. This study introduces the LOKT (Large Language Model Option-weighted Knowledge Tracing) model to address the cold start problem where limited historical data available using large language models (LLMs). While traditional KT models have incorporated option weights, our research extends this by integrating these weights into an LLM-based KT framework. Moving beyond the binary classification of correct and incorrect responses, we emphasize that different types of incorrect answers offer valuable insights into a learner's knowledge state. By converting these responses into text-based ordinal categories, we enable LLMs to assess learner understanding with greater clarity, although our approach focuses on the final knowledge state rather than the progression of learning over time. Using five public datasets, we demonstrate that the LOKT model sustains high predictive accuracy even with limited data, effectively addressing both "learner cold-start" and "system cold-start" scenarios. These findings showcase LOKT's potential to enhance LLM-based learning tools and support early-stage personalization.
Abstract:This study introduces \textbf{InteractEval}, a framework that integrates human expertise and Large Language Models (LLMs) using the Think-Aloud (TA) method to generate attributes for checklist-based text evaluation. By combining human flexibility and reasoning with LLM consistency, InteractEval outperforms traditional non-LLM-based and LLM-based baselines across four distinct dimensions, consisting of Coherence, Fluency, Consistency, and Relevance. The experiment also investigates the effectiveness of the TA method, showing that it promotes divergent thinking in both humans and LLMs, leading to the generation of a wider range of relevant attributes and enhance text evaluation performance. Comparative analysis reveals that humans excel at identifying attributes related to internal quality (Coherence and Fluency), but LLMs perform better at those attributes related to external alignment (Consistency and Relevance). Consequently, leveraging both humans and LLMs together produces the best evaluation outcomes. In other words, this study emphasizes the necessity of effectively combining humans and LLMs in an automated checklist-based text evaluation framework. The code is available at \textbf{\url{https://github.com/BBeeChu/InteractEval.git}}.
Abstract:Current histopathology research has primarily focused on using whole-slide images (WSIs) produced by scanners with weakly-supervised multiple instance learning (MIL). However, WSIs are costly, memory-intensive, and require extensive analysis time. As an alternative, microscopy-based analysis offers cost and memory efficiency, though microscopy images face issues with unknown absolute positions and redundant images due to multiple captures from the subjective perspectives of pathologists. To this end, we introduce MicroMIL, a weakly-supervised MIL framework specifically built to address these challenges by dynamically clustering images using deep cluster embedding (DCE) and Gumbel Softmax for representative image extraction. Graph edges are then constructed from the upper triangular similarity matrix, with nodes connected to their most similar neighbors, and a graph neural network (GNN) is utilized to capture local and diverse areas of contextual information. Unlike existing graph-based MIL methods designed for WSIs that require absolute positions, MicroMIL efficiently handles the graph edges without this need. Extensive evaluations on real-world colon cancer (Seegene) and public BreakHis datasets demonstrate that MicroMIL outperforms state-of-the-art (SOTA) methods, offering a robust and efficient solution for patient diagnosis using microscopy images. The code is available at https://anonymous.4open.science/r/MicroMIL-6C7C
Abstract:Recent advancements in graph neural networks (GNNs) and heterogeneous GNNs (HGNNs) have advanced node embeddings and relationship learning for various tasks. However, existing methods often rely on domain-specific predefined meta-paths, which are coarse-grained and focus solely on aspects like node type, limiting their ability to capture complex interactions. We introduce MF2Vec, a model that uses multi-faceted (fine-grained) paths instead of predefined meta-paths. MF2Vec extracts paths via random walks and generates multi-faceted vectors, ignoring predefined schemas. This method learns diverse aspects of nodes and their relationships, constructs a homogeneous network, and creates node embeddings for classification, link prediction, and clustering. Extensive experiments show that MF2Vec outperforms existing methods, offering a more flexible and comprehensive framework for analyzing complex networks. The code is available at https://anonymous.4open.science/r/MF2Vec-6ABC.