Abstract:Climate crisis and correlating prolonged, more intense periods of drought threaten tree health in cities and forests. In consequence, arborists and foresters suffer from increasing workloads and, in the best case, a consistent but often declining workforce. To optimise workflows and increase productivity, we propose a novel open-source end-to-end approach that generates helpful information and improves task planning of those who care for trees in and around cities. Our approach is based on RGB and multispectral UAV data, which is used to create tree inventories of city parks and forests and to deduce tree vitality assessments through statistical indices and Deep Learning. Due to EU restrictions regarding flying drones in urban areas, we will also use multispectral satellite data and fifteen soil moisture sensors to extend our tree vitality-related basis of data. Furthermore, Bamberg already has a georeferenced tree cadastre of around 15,000 solitary trees in the city area, which is also used to generate helpful information. All mentioned data is then joined and visualised in an interactive web application allowing arborists and foresters to generate individual and flexible evaluations, thereby improving daily task planning.
Abstract:Human gender bias is reflected in language and text production. Because state-of-the-art machine translation (MT) systems are trained on large corpora of text, mostly generated by humans, gender bias can also be found in MT. For instance when occupations are translated from a language like English, which mostly uses gender neutral words, to a language like German, which mostly uses a feminine and a masculine version for an occupation, a decision must be made by the MT System. Recent research showed that MT systems are biased towards stereotypical translation of occupations. In 2019 the first, and so far only, challenge set, explicitly designed to measure the extent of gender bias in MT systems has been published. In this set measurement of gender bias is solely based on the translation of occupations. In this paper we present an extension of this challenge set, called WiBeMT, with gender-biased adjectives and adds sentences with gender-biased verbs. The resulting challenge set consists of over 70, 000 sentences and has been translated with three commercial MT systems: DeepL Translator, Microsoft Translator, and Google Translate. Results show a gender bias for all three MT systems. This gender bias is to a great extent significantly influenced by adjectives and to a lesser extent by verbs.