Abstract:A formal framework is given for the characterizability of a class of belief revision operators, defined using minimization over a class of partial preorders, by postulates. It is shown that for partial orders characterizability implies a definability property of the class of partial orders in monadic second-order logic. Based on a non-definability result for a class of partial orders, an example is given of a non-characterizable class of revision operators. This appears to be the first non-characterizability result in belief revision.